Chromatin remodeling and transcriptional regulation.
نویسندگان
چکیده
Extensive studies in the past few years have begun to demonstrate that chromosome structure plays a critical role in transcriptional regulation. Two highly conserved mechanisms for altering chromosome structure have been identified: 1) post-translational modification of histones and 2) adenosine triphosphate (ATP)-dependent chromosome remodeling. Acetylation of histone lysine residues has been known for three decades to be associated with transcriptional activation. Recent discoveries, however, show that a number of transcriptional regulators are histone acetylases or histone deacetylases. Specific DNA-binding transcription factors recruit histone acetylases and deacetylases to promoters to activate or repress transcription. These results strongly support the notion that histone acetylation and deacetylation play an important role in transcriptional regulation. Recent findings have also provided insight into the molecular mechanisms by which ATP-dependent chromosome-remodeling activities participate in transcriptional regulation. Furthermore, some ATP-dependent chromosome-remodeling activities have been shown to complex with histone deacetylases. In the complexes studied to date, the ATP-dependent chromosome-remodeling activity enhances the histone deacetylase activity. Therefore, the two mechanisms appear to work in concert to achieve precise control of transcription. Disruption of chromosome remodeling has been linked to a number of diseases, and a complete understanding of the complex chromosome-remodeling machinery may lead to the development of new therapies.
منابع مشابه
Roles of Chromatin insulators in gene regulation and diseases
With advances in genetic science, the dynamic structure of eukaryotic genome is considered as basis of gene expression regulation. Long-distance communication between regulatory elements and target promoters is critical and the mechanisms responsible for this connection are just starting to emerge. Chromatin insulators are key determinants of proper gene regulation and precise organization of c...
متن کاملThe BRG1 transcriptional coregulator
The packaging of genomic DNA into chromatin, often viewed as an impediment to the transcription process, plays a fundamental role in the regulation of gene expression. Chromatin remodeling proteins have been shown to alter local chromatin structure and facilitate recruitment of essential factors required for transcription. Brahma-related gene-1 (BRG1), the central catalytic subunit of numerous ...
متن کاملChromatin Remodeling and Transcriptional Control in Innate Immunity: Emergence of Akirin2 as a Novel Player
Transcriptional regulation of inflammatory gene expression has been at the forefront of studies of innate immunity and is coordinately regulated by transcription factors, including NF-κB, and chromatin modifiers. The growing evidence for involvement of chromatin in the regulation of gene expression in innate immune cells, has uncovered an evolutionarily conserved role of microbial sensing and c...
متن کاملChromatin remodeling and activation of chromosomal DNA replication by an acidic transcriptional activation domain from BRCA1.
An increasing number of transcription factors have been shown to activate DNA replication. However, the underlying mechanism remains to be elucidated. Here it is shown that when tethered to a cellular replication origin, the acidic transcriptional activation domain of the breast cancer protein BRCA1 alters the local chromatin structure and stimulates chromosomal DNA replication. Cancer-predispo...
متن کاملA SWI/SNF–Related Chromatin Remodeling Complex, E-RC1, Is Required for Tissue-Specific Transcriptional Regulation by EKLF In Vitro
Erythroid Krüppel-like factor (EKLF) is necessary for stage-specific expression of the human beta-globin gene. We show that EKLF requires a SWI/SNF-related chromatin remodeling complex, EKLF coactivator-remodeling complex 1 (E-RC1), to generate a DNase I hypersensitive, transcriptionally active beta-globin promoter on chromatin templates in vitro. E-RC1 contains BRG1, BAF170, BAF155, and INI1 (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the National Cancer Institute
دوره 91 15 شماره
صفحات -
تاریخ انتشار 1999